3,045 research outputs found

    Application of the epidemiological model in studying human error in aviation

    Get PDF
    An epidemiological model is described in conjunction with the analytical process through which aviation occurrence reports are composed into the events and factors pertinent to it. The model represents a process in which disease, emanating from environmental conditions, manifests itself in symptoms that may lead to fatal illness, recoverable illness, or no illness depending on individual circumstances of patient vulnerability, preventive actions, and intervention. In the aviation system the analogy of the disease process is the predilection for error of human participants. This arises from factors in the operating or physical environment and results in errors of commission or omission that, again depending on the individual circumstances, may lead to accidents, system perturbations, or harmless corrections. A discussion of the previous investigations, each of which manifests the application of the epidemiological method, exemplifies its use and effectiveness

    Information transfer problems in the aviation system

    Get PDF
    Problems in the transfer of information within the aviation system are discussed. Particular attention is given to voice communication problems in both intracockpit and air/ground situations

    NASA aviation safety reporting system

    Get PDF
    The origins and development of the NASA Aviation Safety Reporting System (ASRS) are briefly reviewed. The results of the first quarter's activity are summarized and discussed. Examples are given of bulletins describing potential air safety hazards, and the disposition of these bulletins. During the first quarter of operation, the ASRS received 1464 reports; 1407 provided data relevant to air safety. All reports are being processed for entry into the ASRS data base. During the reporting period, 130 alert bulletins describing possible problems in the aviation system were generated and disseminated. Responses were received from FAA and others regarding 108 of the alert bulletins. Action was being taken with respect to 70 of the 108 responses received. Further studies are planned of a number of areas, including human factors problems related to automation of the ground and airborne portions of the national aviation system

    Retrospective studies of operating problems in air transport

    Get PDF
    An epidemiological model for the study of human errors in aviation is presented. In this approach, retrospective data are used as the basis for formulation of hypotheses as to system factors which may have contributed to such errors. Prospective experimental studies of aviation operations are also required in order to prove or disprove the hypotheses, and to evaluate the effectiveness of intervention techniques designed to solve operational problems in the aviation system

    Simulation studies of air transport operational problems

    Get PDF
    An experimental evaluation of the monitored approach procedure for conducting low visibility instrument approaches is described. Four airline crews each flew 16 approaches using the monitored procedure and 16 using a modified standard procedure in a DC-10 simulator under various conditions of visibility, wind shear and turbulence, and radar vectoring scenarios. In terms of system measures of aircrew performance, no major differences were found. Pilot opinion data indicate that there are some desirable characteristics of the monitored procedure, particularly with reference to the increased role of the flight engineer in conducting low visibility approaches. Rationale for developing approach procedures is discussed

    Angelena

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/3018/thumbnail.jp

    Pilots' use of a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier operations. Volume 1: Methodology, summary and conclusions

    Get PDF
    Pilots' use of and responses to a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier line operations are described in Volume 1. TCAS 2 monitors the positions of nearby aircraft by means of transponder interrogation, and it commands a climb or descent when conflicting aircraft are projected to reach an unsafe closest point-of-approach within 20 to 25 seconds. A different level of information about the location of other air traffic was presented to each of three groups of flight crews during their execution of eight simulated air carrier flights. A fourth group of pilots flew the same segments without TCAS 2 equipment. Traffic conflicts were generated at intervals during the flights; many of the conflict aircraft were visible to the flight crews. The TCAS equipment successfully ameliorated the seriousness of all conflicts; three of four non-TCAS crews had hazardous encounters. Response times to TCAS maneuver commands did not differ as a function of the amount of information provided, nor did response accuracy. Differences in flight experience did not appear to contribute to the small performance differences observed. Pilots used the displays of conflicting traffic to maneuver to avoid unseen traffic before maneuver advisories were issued by the TCAS equipment. The results indicate: (1) that pilots utilize TCAS effectively within the response times allocated by the TCAS logic, and (2) that TCAS 2 is an effective collision avoidance device. Volume II contains the appendices referenced in Volume I, providing details of the experiment and the results, and the text of two reports written in support of the program

    Pilots' use of a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier operations. Volume 2: Appendices

    Get PDF
    Pilots' use of and responses to a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier line operations are discribed in Volume 1. TCAS 2 monitors the positions of nearby aircraft by means of transponder interrogation, and it commands a climb or descent which conflicting aircraft are projected to reach an unsafe closest point-of-approach within 20 to 25 seconds. A different level of information about the location of other air traffic was presented to each of three groups of flight crews during their execution of eight simulated air carrier flights. A fourth group of pilots flew the same segments without TCAS 2 equipment. Traffic conflicts were generated at intervals during the flights; many of the conflict aircraft were visible to the flight crews. The TCAS equipment successfully ameliorated the seriousness of all conflicts; three of four non-TCAS crews had hazardous encounters. Response times to TCAS maneuver commands did not differ as a function of the amount of information provided, nor did response accuracy. Differences in flight experience did not appear to contribute to the small performance differences observed. Pilots used the displays of conflicting traffic to maneuver to avoid unseen traffic before maneuver advisories were issued by the TCAS equipment. The results indicate: (1) that pilots utilize TCAS effectively within the response times allocated by the TCAS logic, and (2) that TCAS 2 is an effective collision avoidance device. Volume 2 contains the appendices referenced in Volume 1, providing details of the experiment and the results, and the text of two reports written in support of the program

    Development of Aluminum LEKIDs for Balloon-Borne Far-IR Spectroscopy

    Get PDF
    We are developing lumped-element kinetic inductance detectors (LEKIDs) designed to achieve background-limited sensitivity for far-infrared (FIR) spectroscopy on a stratospheric balloon. The Spectroscopic Terahertz Airborne Receiver for Far-InfraRed Exploration (STARFIRE) will study the evolution of dusty galaxies with observations of the [CII] 158 μ\mum and other atomic fine-structure transitions at z=0.5−1.5z=0.5-1.5, both through direct observations of individual luminous infrared galaxies, and in blind surveys using the technique of line intensity mapping. The spectrometer will require large format (∼\sim1800 detectors) arrays of dual-polarization sensitive detectors with NEPs of 1×10−171 \times 10^{-17} W Hz−1/2^{-1/2}. The low-volume LEKIDs are fabricated with a single layer of aluminum (20 nm thick) deposited on a crystalline silicon wafer, with resonance frequencies of 100−250100-250 MHz. The inductor is a single meander with a linewidth of 0.4 μ\mum, patterned in a grid to absorb optical power in both polarizations. The meander is coupled to a circular waveguide, fed by a conical feedhorn. Initial testing of a small array prototype has demonstrated good yield, and a median NEP of 4×10−184 \times 10^{-18} W Hz−1/2^{-1/2}.Comment: accepted for publication in Journal of Low Temperature Physic
    • …
    corecore